1.1 Makefile文件是什么?

Makefile 文件描述了 Linux 系统下 C/C++ 工程的编译规则,它用来自动化编译 C/C++ 项目。一旦写编写好 Makefile 文件,只需要一个 make 命令,整个工程就开始自动编译,不再需要手动执行 GCC 命令。

一个中大型 C/C++ 工程的源文件有成百上千个,它们按照功能、模块、类型分别放在不同的目录中,Makefile 文件定义了一系列规则,指明了源文件的编译顺序、依赖关系、是否需要重新编译等。

Makefile文件是什么? (biancheng.net)

1.2 Makefile文件编写规则

其结构如下:

targets : prerequisites
    command

或者是

targets : prerequisites; command
    command

targets:规则的目标,可以是Object File(中间文件),也可以是可执行文件,还可以是一个标签。

prerequisites:是我们的依赖文件,要生产targets需要的文件,可以有多个,也可以没有。

command:make需要执行的命令(任意shell命令),可以有多条命令,每一条命令占一行。

注意:我们的目标和依赖文件之间要使用冒号分隔开,命令的开始一定要使用Tab键。

通过下面的例子来具体使用一下 Makefile 的规则,Makefile文件中添代码如下:

test:test.c
    gcc -o test test.c

上述代码实现的功能就是编译 test.c 文件,通过这个实例可以详细的说明 Makefile 的具体的使用。其中 test 是的目标文件,也是我们的最终生成的可执行文件。依赖文件就是 test.c 源文件,重建目标文件需要执行的操作是gcc -o test test.c

使用 Makefile 的方式:首先需要编写好 Makefile 文件,然后在 shell 中执行 make 命令,程序就会自动执行,得到最终的目标文件。

简单的概括一下Makefile 中的内容,它主要包含有五个部分,分别是:

  1. 显式规则

显式规则说明了,如何生成一个或多的的目标文件。这是由 Makefile 的书写者明显指出,要生成的文件,文件的依赖文件,生成的命令。

  1. 隐晦规则

由于我们的 make 命名有自动推导的功能,所以隐晦的规则可以让我们比较粗糙地简略地书写 Makefile,这是由 make 命令所支持的。

  1. 变量的定义

在 Makefile 中我们要定义一系列的变量,变量一般都是字符串,这个有点像C语言中的宏,当 Makefile 被执行时,其中的变量都会被扩展到相应的引用位置上。

  1. 文件指示

其包括了三个部分,一个是在一个 Makefile 中引用另一个 Makefile,就像C语言中的 include 一样;另一个是指根据某些情况指定 Makefile 中的有效部分,就像C语言中的预编译 #if 一样;还有就是定义一个多行的命令。有关这一部分的内容,我会在后续的部分中讲述。

  1. 注释

Makefile 中只有行注释,和 UNIX 的 Shell 脚本一样,其注释是用“#”字符,这个就像 C/C++ 中的“//”一样。如果你要在你的 Makefile 中使用“#”字符,可以用反斜框进行转义,如:“#”。

1.3 工作流程

当我们在执行 make 条命令的时候,make 就会去当前文件下找要执行的编译规则,也就是 Makefile 文件。我们编写 Makefile 的时可以使用的文件的名称 "GNUmakefile" 、"makefile" 、"Makefile" ,make 执行时回去寻找 Makefile 文件,找文件的顺序也是这样的。

我们推荐使用 Makefile(一般在工程中都这么写,大写的会比较的规范)。

Makefile 的具体工作流程可以通过例子来看一下:创建一个包含有多个源文件和 Makefile 的目录文件,源文件之间相互关联。在 Makefile 中添加下面的代码:

main:main.o test1.o test2.o
gcc main.o test1.o test2.o -o main
main.o:main.c test.h
gcc -c main.c -o main.o
test1.o:test1.c test.h
gcc -c test1.c -o test1.o
test2.o:test2.c test.h
gcc -c test2.c -o test2.o

在我们编译项目文件的时候,默认情况下,make 执行的是 Makefile 中的第一规则(Makefile 中出现的第一个依赖关系),此规则的第一目标称之为“最终目标”或者是“终极目标”。

在 shell 命令行执行的 make 命令,就可以得到可执行文件 main 和中间文件 main.o、test1.o 和 test2.o,main 就是我们要生成的最终文件。通过 Makefile 我们可以发现,目标 main"在 Makefile 中是第一个目标,因此它就是 make 的终极目标,当修改过任何 C 文件后,执行 make 将会重建终极目标 main。

它的具体工作顺序是:

  • 当在 shell 提示符下输入 make 命令以后。 make 读取当前目录下的 Makefile 文件,并将 Makefile 文件中的第一个目标作为其执行的“终极目标”;
  • 开始处理第一个规则(终极目标所在的规则)。在我们的例子中,第一个规则就是目标 "main" 所在的规则。规则描述了 "main" 的依赖关系,并定义了链接 ".o" 文件生成目标 "main" 的命令;
  • make 在执行这个规则所定义的命令之前,首先处理目标 "main" 的所有的依赖文件的更新规则(以这些 ".o" 文件为目标的规则)。

对这些 ".o" 文件为目标的规则处理有下列三种情况:

  • 目标 ".o" 文件不存在,使用其描述规则创建它;
  • 目标 ".o" 文件存在,目标 ".o" 文件所依赖的 ".c" 源文件 ".h" 文件中的任何一个比目标 ".o" 文件“更新”(在上一次 make 之后被修改)。则根据规则重新编译生成它;
  • 目标 ".o" 文件存在,目标 ".o" 文件比它的任何一个依赖文件(".c" 源文件、".h" 文件)“更新”(它的依赖文件在上一次 make 之后没有被修改),则什么也不做。

通过上面的更新规则我们可以了解到中间文件的作用,也就是编译时生成的 ".o" 文件。作用是检查某个源文件是不是进行过修改,最终目标文件是不是需要重建。我们执行 make 命令时,只有修改过的源文件或者是不存在的目标文件会进行重建,而那些没有改变的文件不用重新编译,这样在很大程度上节省时间,提高编程效率。小的工程项目可能体会不到,项目工程文件越大,效果才越明显。

当然 make 命令能否顺利的执行,还在于我们是否制定了正确的的依赖规则,当前目录下是不是存在需要的依赖文件,只要任意一点不满足,我们在执行 make 的时候就会出错。所以完成一个正确的 Makefile 不是一件简单的事情。

1.4 清除工作目录中的过程文件

我们在使用的时候会产生中间文件会让整个文件看起来很乱,所以在编写 Makefile 文件的时候会在末尾加上这样的规则语句:

.PHONY:clean
clean:
    rm -rf *.o test

其中 "*.o" 是执行过程中产生的中间文件,"test" 是最终生成的执行文件。我们可以看到 clean 是独立的,它只是一个伪目标,不是具体的文件,不会与第一个目标文件相关联,所以我们在执行 make 的时候也不会执行下面的命令。在shell 中执行 "make clean" 命令,编译时的中间文件和生成的最终目标文件都会被清除,方便我们下次的使用。

1.5 Makefile通配符的使用

Makefile 是可以使用 shell 命令的。 shell 中使用的通配符有:"*","?","[...]"。具体看一下这些通配符的表示含义和具体的使用方法。

通配符 使用说明
* 匹配0个或者是任意个字符
匹配任意一个字符
[] 我们可以指定匹配的字符放在 "[]" 中

通配符可以出现在模式的规则中,也可以出现在命令中,详细的使用情况如下:

实例 1:

.PHONY:clean
clean:
    rm -rf *.o test

这是在 Makefile 中经常使用的规则语句。这个实例可以说明通配符可以使用在规则的命令当中,表示的是任意的以 .o 结尾的文件。
实例 2:

test:*.c
    gcc -o $@ $^

这个实例可以说明我们的通配符不仅可以使用在规则的命令中,还可以使用在规则中。用来表示生所有的以 .c 结尾的文件。

但是如果我们的通配符使用在依赖的规则中的话一定要注意这个问题:不能在引用变量中使用,如下所示。

OBJ=*.c
test:$(OBJ)
    gcc -o $@ $^

我们去执行这个命令的时候会出现错误,提示我们没有 ".c" 文件,实例中我们相要表示的是当前目录下所有的 ".c" 文件,但是我们在使用的时候并没有展开,而是直接识别成了一个文件。文件名是 ".c"。

如果我们就是相要通过引用变量的话,我们要使用一个函数 "wildcard",这个函数在我们引用变量的时候,会帮我们展开。我们把上面的代码修改一下就可以使用了。

OBJ=$(wildcard *.c)
test:$(OBJ)
    gcc -o $@ $^

这样我们再去使用的时候就可以了。调用函数的时候,会帮我们自动展开函数。

还有一个和通配符 "*" 相类似的字符,这个字符是 "%",也是匹配任意个字符,使用在我们的的规则当中。

test:test.o test1.o
    gcc -o $@ $^
%.o:%.c
    gcc -o $@ $^

"%.o" 把我们需要的所有的 ".o" 文件组合成为一个列表,从列表中挨个取出的每一个文件,"%" 表示取出来文件的文件名(不包含后缀),然后找到文件中和 "%"名称相同的 ".c" 文件,然后执行下面的命令,直到列表中的文件全部被取出来为止。

这个属于 Makefile 中静态模规则:规则存在多个目标,并且不同的目标可以根据目标文件的名字来自动构造出依赖文件。跟我们的多规则目标的意思相近,但是又不相同。

1.6 变量的定义和使用

变量的定义

Makefile 文件中定义变量的基本语法如下:

变量的名称=值列表

Makefile 中的变量的使用其实非常的简单,因为它并没有像其它语言那样定义变量的时候需要使用数据类型。变量的名称可以由大小写字母、阿拉伯数字和下划线构成。等号左右的空白符没有明确的要求,因为在执行 make 的时候多余的空白符会被自动的删除。至于值列表,既可以是零项,又可以是一项或者是多项。如:

VALUE_LIST = one two three

调用变量的时候可以用 "\$(VALUE_LIST)" 或者是 "${VALUE_LIST}" 来替换,这就是变量的引用。实例:

OBJ=main.o test.o test1.o test2.o
test:$(OBJ)
      gcc -o test $(OBJ)

这就是引用变量后的 Makefile 的编写,比我们之前的编写方式要简单的多。当要添加或者是删除某个依赖文件的时候,我们只需要改变变量 "OBJ" 的值就可以了。

变量的基本赋值

知道了如何定义,下面我们来说一下 Makefile 的变量的四种基本赋值方式:

  • 简单赋值 ( := ) 编程语言中常规理解的赋值方式,只对当前语句的变量有效。
  • 递归赋值 ( = ) 赋值语句可能影响多个变量,所有目标变量相关的其他变量都受影响。
  • 条件赋值 ( ?= ) 如果变量未定义,则使用符号中的值定义变量。如果该变量已经赋值,则该赋值语句无效。
  • 追加赋值 ( += ) 原变量用空格隔开的方式追加一个新值。

简单赋值

x:=foo
y:=$(x)b
x:=new
test:
      @echo "y=>$(y)"
      @echo "x=>$(x)"